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Quasi-Periodic Oscillations (QPOs)

• Peaks in Power Density Spectra of some XRBs 

• Why they are interesting 
• Tell us something about accretion physics  (Almost certain) 

• Allow measurement of BH spin      (Possible) 

• Probe spacetime geometry       (Speculative) 

• Focus on two types 
• Type-C Low-Frequency QPO (LFQPO) 

• High-Frequency QPO (HFQPO) 
•   
• 3:2 frequency ratio

& 100Hz
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Figure 11
High-frequency quasi-periodic oscillations observed in black-hole binary and black-hole
candidate systems. The traces in blue show power density spectrums (PDSs) for the range
13–30 keV. Red traces indicate PDSs with a broader energy range, which may be either 2–
30 keV or 6–30 keV.

All of the strong detections (>4σ ) above 100 Hz occur in the SPL state. In three
of the sources that exhibit HFQPOs with a 3:2 frequency ratio, the 2ν0 QPO ap-
pears when the PL flux is very strong, whereas 3ν0 appears when the PL flux is
weaker (Remillard et al. 2002a, 2005b). Currently, there is no explanation for this
result.

The commensurate frequencies of HFQPOs suggest that these oscillations are
driven by some type of resonance condition. Abramowicz & Kluzniak (2001) pro-
posed that orbiting blobs of accreting matter could generate the harmonic fre-
quencies via a resonance between a pair of the coordinate frequencies given by
GR. Earlier work had used GR coordinate frequencies and associated beat fre-
quencies to explain fast QPOs in both neutron-star and BH systems (Stella, Vietri
& Morsink 1999), but without invoking a resonance condition. Current work on
resonances as a means of explaining HFQPOs includes more realistic models for
fluid flow in the Kerr metric. Resonance models are considered in more detail in
Section 8.2.4.
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All of the strong detections (>4σ ) above 100 Hz occur in the SPL state. In three
of the sources that exhibit HFQPOs with a 3:2 frequency ratio, the 2ν0 QPO ap-
pears when the PL flux is very strong, whereas 3ν0 appears when the PL flux is
weaker (Remillard et al. 2002a, 2005b). Currently, there is no explanation for this
result.

The commensurate frequencies of HFQPOs suggest that these oscillations are
driven by some type of resonance condition. Abramowicz & Kluzniak (2001) pro-
posed that orbiting blobs of accreting matter could generate the harmonic fre-
quencies via a resonance between a pair of the coordinate frequencies given by
GR. Earlier work had used GR coordinate frequencies and associated beat fre-
quencies to explain fast QPOs in both neutron-star and BH systems (Stella, Vietri
& Morsink 1999), but without invoking a resonance condition. Current work on
resonances as a means of explaining HFQPOs includes more realistic models for
fluid flow in the Kerr metric. Resonance models are considered in more detail in
Section 8.2.4.
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All of the strong detections (>4σ ) above 100 Hz occur in the SPL state. In three
of the sources that exhibit HFQPOs with a 3:2 frequency ratio, the 2ν0 QPO ap-
pears when the PL flux is very strong, whereas 3ν0 appears when the PL flux is
weaker (Remillard et al. 2002a, 2005b). Currently, there is no explanation for this
result.

The commensurate frequencies of HFQPOs suggest that these oscillations are
driven by some type of resonance condition. Abramowicz & Kluzniak (2001) pro-
posed that orbiting blobs of accreting matter could generate the harmonic fre-
quencies via a resonance between a pair of the coordinate frequencies given by
GR. Earlier work had used GR coordinate frequencies and associated beat fre-
quencies to explain fast QPOs in both neutron-star and BH systems (Stella, Vietri
& Morsink 1999), but without invoking a resonance condition. Current work on
resonances as a means of explaining HFQPOs includes more realistic models for
fluid flow in the Kerr metric. Resonance models are considered in more detail in
Section 8.2.4.
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(Remillard & McClintock 2006)



Type-C QPO as precession

• Right frequency range (0.01-10 Hz) 
• Stella & Vietri (1998); Stella et al. (1999); Ingram et al. (2009) 

• Fits in with the truncated disk interpretation of Hard state 
• Ingram et al. (2009);  

• Explains association of QPO with high inclination sources 
• Homan (2012); Motta et al. (2015) 

• Consistent with phase-resolved spectroscopy of Fe-line 
• Ingram & Done (2012); Ingram & van der Klis (2015); Ingram et al. (2016)
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Type-C QPO as precession

• What could STROBE-X do?
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Models to explain HFQPOs

• Relativistic Precession Model (RPM) 
• Stella & Vietri (1998); Stella et al. (1999) 

• Diskoseismic Modes 
• Wagoner (1999); Kato (2001); Kato et al. (2008) 

• Resonance Models 
• Kluzniak & Abramowicz (2001; 2002); Kluzniak et al. (2004) 

• Global Oscillation Modes 
• Rezzolla et al. (2003); Blaes et al. (2006); Török et al. (2016)

Oscillation modes of relativistic slender tori 1243

Table 2. Eigenfrequencies of the lowest order modes of the general polytropic slender torus.
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Table 3. Eigenfunctions of the lowest order modes of the general polytropic slender torus.
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Figure 1. Poloidal velocity fields (δux, δuy) of the lowest order, non-trivial slender torus modes. The torus was assumed to be orbiting in a Kerr space–time
with a/M = 0.5 and at a Boyer–Lindquist coordinate radius of r0 = 10M. The slope of the internal specific angular momentum distribution was assumed to
give κ̄0/ω̄r = 0.5 and the polytropic index was n = 3.

We summarize the frequencies and eigenfunctions of all the lowest order modes of the general slender torus in Tables 2 and 3. We also
show the poloidal velocity fields for these modes in Fig. 1 for a torus with κ̄0/ω̄r = 0.5. While we are still quite far from the Keplerian
limit, the velocity fields are already showing what happens in that case. The cross-mode frequency becomes degenerate with ω̄θ in that limit,
consisting of opposite vertical oscillations on either radial side of the pressure maximum. The breathing mode becomes degenerate with the
lowest order vertical acoustic wave, as its velocity field becomes largely vertical. The inertial and plus modes consist largely of radial motions
in the Keplerian limit, and become degenerate with ω̄r .

It is clear that the procedure we used in this section can be extended to calculate even higher order modes. In the special case of constant
specific angular momentum tori, the dispersion relation remains quadratic for modes of quite high order, and we summarize the frequencies
and eigenfunctions of these modes in Tables 4 and 5.

In general, however, higher order modes result in dispersion relations which are polynomials of cubic and higher order, and should be
solved numerically. To do this, we substitute the power-series expansion

W (x̄, ȳ) =
∞∑

i,l=0

Wil x̄ i ȳl (62)

C⃝ 2006 The Authors. Journal compilation C⃝ 2006 RAS, MNRAS 369, 1235–1252

´ ´



Global modes in near 3:2 ratio

• Breathing & vertical epicyclic

(Fragile et al. 2016)

rin = 6rg
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Figure 1. Poloidal velocity fields (δux, δuy) of the lowest order, non-trivial slender torus modes. The torus was assumed to be orbiting in a Kerr space–time
with a/M = 0.5 and at a Boyer–Lindquist coordinate radius of r0 = 10M. The slope of the internal specific angular momentum distribution was assumed to
give κ̄0/ω̄r = 0.5 and the polytropic index was n = 3.

We summarize the frequencies and eigenfunctions of all the lowest order modes of the general slender torus in Tables 2 and 3. We also
show the poloidal velocity fields for these modes in Fig. 1 for a torus with κ̄0/ω̄r = 0.5. While we are still quite far from the Keplerian
limit, the velocity fields are already showing what happens in that case. The cross-mode frequency becomes degenerate with ω̄θ in that limit,
consisting of opposite vertical oscillations on either radial side of the pressure maximum. The breathing mode becomes degenerate with the
lowest order vertical acoustic wave, as its velocity field becomes largely vertical. The inertial and plus modes consist largely of radial motions
in the Keplerian limit, and become degenerate with ω̄r .

It is clear that the procedure we used in this section can be extended to calculate even higher order modes. In the special case of constant
specific angular momentum tori, the dispersion relation remains quadratic for modes of quite high order, and we summarize the frequencies
and eigenfunctions of these modes in Tables 4 and 5.

In general, however, higher order modes result in dispersion relations which are polynomials of cubic and higher order, and should be
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W (x̄, ȳ) =
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Table 2. Eigenfrequencies of the lowest order modes of the general polytropic slender torus.
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Table 3. Eigenfunctions of the lowest order modes of the general polytropic slender torus.

(Px, Py, j, k) Eigenfunction

(+, +, 0, 0) 1
(−, +, 0, 1) x̄
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Figure 1. Poloidal velocity fields (δux, δuy) of the lowest order, non-trivial slender torus modes. The torus was assumed to be orbiting in a Kerr space–time
with a/M = 0.5 and at a Boyer–Lindquist coordinate radius of r0 = 10M. The slope of the internal specific angular momentum distribution was assumed to
give κ̄0/ω̄r = 0.5 and the polytropic index was n = 3.

We summarize the frequencies and eigenfunctions of all the lowest order modes of the general slender torus in Tables 2 and 3. We also
show the poloidal velocity fields for these modes in Fig. 1 for a torus with κ̄0/ω̄r = 0.5. While we are still quite far from the Keplerian
limit, the velocity fields are already showing what happens in that case. The cross-mode frequency becomes degenerate with ω̄θ in that limit,
consisting of opposite vertical oscillations on either radial side of the pressure maximum. The breathing mode becomes degenerate with the
lowest order vertical acoustic wave, as its velocity field becomes largely vertical. The inertial and plus modes consist largely of radial motions
in the Keplerian limit, and become degenerate with ω̄r .

It is clear that the procedure we used in this section can be extended to calculate even higher order modes. In the special case of constant
specific angular momentum tori, the dispersion relation remains quadratic for modes of quite high order, and we summarize the frequencies
and eigenfunctions of these modes in Tables 4 and 5.

In general, however, higher order modes result in dispersion relations which are polynomials of cubic and higher order, and should be
solved numerically. To do this, we substitute the power-series expansion

W (x̄, ȳ) =
∞∑

i,l=0

Wil x̄ i ȳl (62)
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Simultaneous High Frequency & type-C QPOs

• GRO J1655-40, XTE J1550-564 & H1743-322 
• Motta et al. 2014a; Motta et al. 2014b; Homan et al. 2005 

• M82 X-1 & NGC 1313 X-1 
• Pasham et al. 2014; Pasham et al. 2015

2560 S. E. Motta et al.

Figure 2. PDS obtained averaging the observations of Sample B1. The
figure shows the three simultaneous QPOs detected in the PDS. In the large
panel, we show the type-C QPO, while in the two insets we show the lower
(top panel) and upper (bottom panel) HFQPOs.

(b) Sub-sample B2: two observations show a low-frequency type-
C QPO at ∼18 Hz and an HFQPO at ∼450 Hz.

Lists of the HFQPOs detected in GRO J1655−40 are reported in
Remillard et al. (1999), Strohmayer (2001) and Belloni et al. (2012).
Our sample B coincides with the sample obtained crossing the sam-
ples of these works. In all the five observations residuals in the form
of a QPO are visible at ∼300 Hz and/or ∼450 Hz in the PDS pro-
duced in the total energy band. However, the HFQPOs at ∼300 Hz
are detected in the soft band in three observations, while the HFQPO
at ∼450 Hz are detected in the hard energy band of the five observa-
tions. The type-C QPO is always clearly observable in the soft, hard
and total energy bands. Since observations of sub-sample B1 show
QPOs with consistent frequencies and since the source was in the
same state (this can be inferred from the hardness ratio value and
rms, see Table 2), in order to improve the quality of the PDS, follow-
ing Strohmayer (2001) we computed an average PDS by combining
the three different observations. The resulting PDS is shown in
Fig. 2. We analysed separately the two observations of sub-sample
B2 showing the type-C QPO and the upper HFQPO. The properties
of all the sample B observations are reported in Table 2.

3 THE RELATIVISTIC PRECESSION MODEL

In this work, we apply the RPM (Stella & Vietri 1998; Stella, Vietri
& Morsink 1999), where certain combinations of the fundamental
frequencies of motion in the strong field regime are associated
with the frequency of certain QPOs observed in accreting compact
objects. We adopt the convention G = c = 1.

When the motion occurs in the equatorial plane (Bardeen, Press &
Teukolsky 1972), from the geodesic equation we obtain the orbital
frequency measured by a static observer at infinity:

νφ = ± 1
2π

(
M

r3

)1/2 1

1 ± a
(

M
r

)3/2 , (1)

for a particle orbiting at a distance r from a BH of mass M and
dimensionless spin parameter a = J/M2 (with J angular momentum
and J/M specific angular momentum).

Here ± 1
2π

( M
r3 )1/2 is the classical Keplerian frequency. The upper

sign always refers to the prograde orbits, while the lower sign refers
to retrograde orbits. The off-equatorial (epicyclic) motion can be
described applying a small perturbation in the circular (cyclic) orbit

on the equatorial plane introducing velocity components in the r and
θ directions (Wilkins 1972). The resulting coordinate frequencies of
the small amplitude radial oscillations within the plane (the epicyclic
frequency νr) and in the vertical direction (the vertical epicyclic
frequency νθ ) are given by

νr = νφ

(
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νθ = νφ

(
1 + 3a2

(
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)1/2

. (3)

These three coordinate frequencies lead to two additional frequen-
cies, the periastron precession frequency

νper = νφ − νr (4)

and the nodal precession frequency

νnod = νφ − νθ . (5)

The nodal precession frequency νnod is identically zero in the
Swarzschild limit (a = 0), where the vertical epicyclic frequency νθ

equals νφ (Merloni et al. 1999). The periastron precession frequency
νper coincides with the orbital frequency νφ at the radius of the in-
nermost stable circular orbit, where the radial epicyclic frequency
equals zero. The innermost stable circular orbit is given by

rISCO = M
(
3 + Z2 ∓ ((3 − Z1) (3 + Z1 + 2Z2))1/2)

Z1 = 1 +
(

1 − a2

rg

)1/3
((
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rg

)1/3

+
(

1 − a

rg

)1/3
)
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(

3a2

rg

+ Z2
1

)1/2

. (6)

Equations (6) are obtained requiring that the radial component of
the gravitational potential and its derivative are identically zero
(Bardeen et al. 1972).

In the RPM, the upper HFQPO is identified with the orbital fre-
quency νφ while the lower HFQPO is associated with the periastron
precession frequency νper. In the originally proposed version of the
RPM (applied to the case of NSs, Stella et al. 1999), the LFQPO
was associated with the second harmonic of the nodal precession
frequency, 2νnod, under the assumption that the inner accretion disc
could be tilted in a way that a stronger signal could be produced at
even harmonics of the nodal precession frequency (Psaltis, Belloni
& van der Klis 1999). Here, we use a simpler assumption and we
associate the LFQPO frequency to the fundamental of the nodal
precession frequency νnod.

Hence, under the assumption that the nodal precession frequency,
the periastron precession frequency and the orbital frequency arise
from the same radius, the system of equations that expresses the
RPM is the following:

νφ = ± 1
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Figure 5. Nodal precession frequency (dotted line), periastron precession frequency (dashed line) and orbital frequency (dot–dashed line) as a function of the
nodal precession frequency around a Kerr BH as predicted by the RPM. The lines are drawn for the mass and spin values (M = 5.31 M⊙ and a = 0.29) that
provide the best fit to the three simultaneous QPO frequencies observed from GRO J1655−40 (blue points in the plot). The corresponding radii are given in the
top x-axis. The black circles represent the characteristic frequencies of the broad components in the PDS of GRO 1655−40, which follow the PBK correlation.
It is noteworthy that all points lie close to the low-frequency extrapolation of the frequencies predicted by the RPM, based on the three simultaneous points
only. The squares represent the frequency of type-C QPOs plotted against itself; this is to illustrate the frequency range over which these QPOs are detected,
therefore their ‘correlation’ is an artefact. All the points are plotted together with their 1σ error. When the error is not visible, it is smaller than the symbol.
The vertical dotted red line marks the nodal frequency produced at the innermost stable circular orbit and the red vertical band indicates its corresponding 3σ

uncertainty. A colour version of the figure is available online.

correlation found by Psaltis et al. (1999). They showed that the
dependence of the Ll frequency on twice the Llf frequency matches
the dependence of the periastron precession frequency on twice the
nodal precession frequency.

Following Stella & Vietri (1999), we inspected the observations
of GRO J1655−40 in sample A to identify the power-spectral com-
ponent following the PBK correlation (Llf , Ll and Lu according to
the nomenclature given above, based on Belloni et al. 2002).

We considered the characteristic frequency νmax [defined as
ν2

max = ν2 + (#/2)2, where # is the width of the Lorentzian com-
ponent describing a given power-spectral feature, see Belloni et al.
2002] of the components Ll and Lu and the peak frequency of the
Llf component.6 Following the prescriptions of the RPM (see Sec-
tion 3), we plotted the characteristic frequencies Ll and Lu as a
function of the Llf frequency. We also plotted the frequencies pre-
dicted by the RPM assuming the mass and spin obtained solving

6 The characteristic frequency νmax constitute a measure for the break fre-
quency of a broad Lorentzian and around this frequency the component
contributes most of its power per logarithmic frequency interval. For the
description of broad components, νmax is to be preferred to the Lorentzian
peak frequency, since broad components are often centred at zero and the
peaks frequency loses its meaning. Also, νmax approaches the value of
the peak frequency for decreasing widths of a Lorentzian component and it
is practically coincident with the centroid frequency in the case of QPOs.

the system as a function of the nodal frequency. The result is shown
in Fig. 5.

(i) All the characteristic frequencies of the Ll and Lu components
match well the frequencies predicted by the RPM. In particular, the
dependence of the Ll frequencies on the type-C QPO frequency (Llf )
follows the dependence of the periastron precession frequency on
the nodal precession frequency, whereas the dependence of the Lu

frequencies on the type-C QPO frequencies matches the dependence
of the orbital frequency on the nodal precession frequency (see
Fig. 5).

(ii) Most of the type-C QPOs in Sample A (Llf components,
associated with the nodal precession motion) show characteristic
frequencies that are consistent with being produced at radii larger
than rISCO. About 6 per cent of the detections are consistent with
being produced at a radius which is slightly smaller than rISCO, on
an artificial extrapolation of the nodal precession frequency slightly
inside rISCO. The highest frequency type-C QPO observed in the
PDS of GRO J1655−40 is centred at 28.32 Hz would correspond to
a radius equal to 4.8 gravitational radii (∼4.5 per cent smaller than
rISCO).

4.3 On the width of the QPOs

QPOs normally observed in BH X-ray binaries are typically nar-
row, with very small fractional widths (#ν/ν ∼ 10−1, van der Klis
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Table 2. Eigenfrequencies of the lowest order modes of the general polytropic slender torus.
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Table 3. Eigenfunctions of the lowest order modes of the general polytropic slender torus.

(Px, Py, j, k) Eigenfunction
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Figure 1. Poloidal velocity fields (δux, δuy) of the lowest order, non-trivial slender torus modes. The torus was assumed to be orbiting in a Kerr space–time
with a/M = 0.5 and at a Boyer–Lindquist coordinate radius of r0 = 10M. The slope of the internal specific angular momentum distribution was assumed to
give κ̄0/ω̄r = 0.5 and the polytropic index was n = 3.

We summarize the frequencies and eigenfunctions of all the lowest order modes of the general slender torus in Tables 2 and 3. We also
show the poloidal velocity fields for these modes in Fig. 1 for a torus with κ̄0/ω̄r = 0.5. While we are still quite far from the Keplerian
limit, the velocity fields are already showing what happens in that case. The cross-mode frequency becomes degenerate with ω̄θ in that limit,
consisting of opposite vertical oscillations on either radial side of the pressure maximum. The breathing mode becomes degenerate with the
lowest order vertical acoustic wave, as its velocity field becomes largely vertical. The inertial and plus modes consist largely of radial motions
in the Keplerian limit, and become degenerate with ω̄r .

It is clear that the procedure we used in this section can be extended to calculate even higher order modes. In the special case of constant
specific angular momentum tori, the dispersion relation remains quadratic for modes of quite high order, and we summarize the frequencies
and eigenfunctions of these modes in Tables 4 and 5.

In general, however, higher order modes result in dispersion relations which are polynomials of cubic and higher order, and should be
solved numerically. To do this, we substitute the power-series expansion

W (x̄, ȳ) =
∞∑

i,l=0

Wil x̄ i ȳl (62)
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Table 2. Eigenfrequencies of the lowest order modes of the general polytropic slender torus.
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Table 3. Eigenfunctions of the lowest order modes of the general polytropic slender torus.
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ȳ2

2ω̄2
θ
−2ω̄2

r +κ̄2
0

Figure 1. Poloidal velocity fields (δux, δuy) of the lowest order, non-trivial slender torus modes. The torus was assumed to be orbiting in a Kerr space–time
with a/M = 0.5 and at a Boyer–Lindquist coordinate radius of r0 = 10M. The slope of the internal specific angular momentum distribution was assumed to
give κ̄0/ω̄r = 0.5 and the polytropic index was n = 3.

We summarize the frequencies and eigenfunctions of all the lowest order modes of the general slender torus in Tables 2 and 3. We also
show the poloidal velocity fields for these modes in Fig. 1 for a torus with κ̄0/ω̄r = 0.5. While we are still quite far from the Keplerian
limit, the velocity fields are already showing what happens in that case. The cross-mode frequency becomes degenerate with ω̄θ in that limit,
consisting of opposite vertical oscillations on either radial side of the pressure maximum. The breathing mode becomes degenerate with the
lowest order vertical acoustic wave, as its velocity field becomes largely vertical. The inertial and plus modes consist largely of radial motions
in the Keplerian limit, and become degenerate with ω̄r .

It is clear that the procedure we used in this section can be extended to calculate even higher order modes. In the special case of constant
specific angular momentum tori, the dispersion relation remains quadratic for modes of quite high order, and we summarize the frequencies
and eigenfunctions of these modes in Tables 4 and 5.

In general, however, higher order modes result in dispersion relations which are polynomials of cubic and higher order, and should be
solved numerically. To do this, we substitute the power-series expansion

W (x̄, ȳ) =
∞∑

i,l=0

Wil x̄ i ȳl (62)
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QPOs and Lense–Thirring L103

Figure 2. Schematic diagram of the geometry considered. The inner flow
(grey with blue angular momentum vector) precesses about the black hole
angular momentum vector whilst the outer disc (red/orange) remains aligned
with the binary partner. The flow extends between ri and ro.

Figure 3. Precession frequency of an inner flow of varying outer radius.
The solid black, red, green, blue and magenta lines represent spin values of
a = 0.3, 0.5, 0.7, 0.9 and 0.998, respectively. The green dashed line repre-
sents a point particle for a = 0.7. The minimum radius is the last stable orbit
as a function of spin. We see that, as in the case of point particle Lense–
Thirring, the peak frequency both is higher than observed values and has
too strong a spin dependence.

ζ ∼ −0.5, and the numerical simulations give ζ ∼ 0. We choose
ζ = 0, but note that this makes less than a factor of 2 difference
from the other prescription for the resultant QPO frequency even at
the largest radii, and that this difference decreases monotonically as
ro decreases.

Fig. 3 shows the precession frequency plotted against ro for a
number of spins with ri = rlso. These frequencies are always higher
at a given ro as the effective radius is a surface density weighted
average from ri to ro We still, however, see the same two problems
encountered in Section 2.1, namely that the peak frequency is too
high and varies too strongly with spin.

2.3 Inner radius

So far, we have considered a flow with its inner radius at the last
stable orbit. Instead, the precession time-scale is set by where the
surface density drops significantly, as the region interior to this will
not contribute significantly to the moment of inertia. Full general
relativistic simulations of the magneto-rotational instability (MRI;
the underlying source of the stresses which transport angular mo-
mentum) show that this drops sharply at around 1.5 × rlso (e.g.

Figure 4. Surface density as a function of radius recovered from numerical
simulations of a misaligned flow (Fragile et al. 2007) with a = 0.5 (red) and
a = 0.9 (blue). Data points have been fit by a double law which breaks at ri.
We find ri(a = 0.5) ∼ 8 and ri(a = 0.9) ∼ 9.

fig 4. in Krolik, Hawley & Hirose 2005) for thick flows aligned
with the black hole spin.

However, we are considering Lense–Thirring precession so the
key issue is that the flow is misaligned. The extra torques on
the flow give extra contributions to the stresses. Simulations (e.g.
Fragile et al. 2007) have shown this to increase the inward velocity,
and therefore decrease the density of the flow. Fig. 4 shows the
surface-density profile obtained from two simulations, both of a
flow misaligned by 15o but with differing black hole spin. The blue
points are for a = 0.9 (Fragile et al. 2007) and the red points are for
a = 0.5 (Fragile et al. 2009). We have fit the data with a smoothly
broken power-law function "oxα/(1 + xγ )(ζ+α)/γ where x = r/ri.
This gives xα and x−ζ for r ≪ ri and r ≫ ri, respectively, while γ

controls the sharpness of the break. We fix ζ = 0 (see Section 2.2)
and obtain ri ∼ 9 for a = 0.9 and ri ∼ 8 for a = 0.5, both of which
are significantly larger than rlso − 1.5 rlso for untilted flows.

Ideally, we would now like to re-plot Fig. 3 using the inner radius
for a misaligned flow. However, we only have two simulation points
for ri, which is clearly inadequate for our purposes. We, therefore,
make an analytical approximation in the next section in order to
address this point.

2.3.1 Solid disc with inner radius set by bending waves

The additional torques will be strongest where the flow is most mis-
aligned, so these should track the shape of the flow. This is set by
bending waves, which communicate the warp and twist in initially
circular and coplanar orbits, against viscous damping. Analytic ap-
proximations to the resulting shape can be calculated assuming
linear perturbations in an initially thin disc (e.g. Ferreira & Ogilvie
2009). The global structure then depends on the ratio of the viscos-
ity parameter, α, relative to the disc semi-thickness, H = hRg . For
α > h/r, warped disturbances via the Lense–Thirring precession are
propagated by viscous decay which eventually drags the inner disc
into alignment with the black hole spin, while the outer disc aligns
with the orbital plane of the companion star (Bardeen & Peterson
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Figure 2. Schematic diagram of the geometry considered. The inner flow
(grey with blue angular momentum vector) precesses about the black hole
angular momentum vector whilst the outer disc (red/orange) remains aligned
with the binary partner. The flow extends between ri and ro.

Figure 3. Precession frequency of an inner flow of varying outer radius.
The solid black, red, green, blue and magenta lines represent spin values of
a = 0.3, 0.5, 0.7, 0.9 and 0.998, respectively. The green dashed line repre-
sents a point particle for a = 0.7. The minimum radius is the last stable orbit
as a function of spin. We see that, as in the case of point particle Lense–
Thirring, the peak frequency both is higher than observed values and has
too strong a spin dependence.

ζ ∼ −0.5, and the numerical simulations give ζ ∼ 0. We choose
ζ = 0, but note that this makes less than a factor of 2 difference
from the other prescription for the resultant QPO frequency even at
the largest radii, and that this difference decreases monotonically as
ro decreases.

Fig. 3 shows the precession frequency plotted against ro for a
number of spins with ri = rlso. These frequencies are always higher
at a given ro as the effective radius is a surface density weighted
average from ri to ro We still, however, see the same two problems
encountered in Section 2.1, namely that the peak frequency is too
high and varies too strongly with spin.

2.3 Inner radius

So far, we have considered a flow with its inner radius at the last
stable orbit. Instead, the precession time-scale is set by where the
surface density drops significantly, as the region interior to this will
not contribute significantly to the moment of inertia. Full general
relativistic simulations of the magneto-rotational instability (MRI;
the underlying source of the stresses which transport angular mo-
mentum) show that this drops sharply at around 1.5 × rlso (e.g.

Figure 4. Surface density as a function of radius recovered from numerical
simulations of a misaligned flow (Fragile et al. 2007) with a = 0.5 (red) and
a = 0.9 (blue). Data points have been fit by a double law which breaks at ri.
We find ri(a = 0.5) ∼ 8 and ri(a = 0.9) ∼ 9.

fig 4. in Krolik, Hawley & Hirose 2005) for thick flows aligned
with the black hole spin.

However, we are considering Lense–Thirring precession so the
key issue is that the flow is misaligned. The extra torques on
the flow give extra contributions to the stresses. Simulations (e.g.
Fragile et al. 2007) have shown this to increase the inward velocity,
and therefore decrease the density of the flow. Fig. 4 shows the
surface-density profile obtained from two simulations, both of a
flow misaligned by 15o but with differing black hole spin. The blue
points are for a = 0.9 (Fragile et al. 2007) and the red points are for
a = 0.5 (Fragile et al. 2009). We have fit the data with a smoothly
broken power-law function "oxα/(1 + xγ )(ζ+α)/γ where x = r/ri.
This gives xα and x−ζ for r ≪ ri and r ≫ ri, respectively, while γ

controls the sharpness of the break. We fix ζ = 0 (see Section 2.2)
and obtain ri ∼ 9 for a = 0.9 and ri ∼ 8 for a = 0.5, both of which
are significantly larger than rlso − 1.5 rlso for untilted flows.

Ideally, we would now like to re-plot Fig. 3 using the inner radius
for a misaligned flow. However, we only have two simulation points
for ri, which is clearly inadequate for our purposes. We, therefore,
make an analytical approximation in the next section in order to
address this point.

2.3.1 Solid disc with inner radius set by bending waves

The additional torques will be strongest where the flow is most mis-
aligned, so these should track the shape of the flow. This is set by
bending waves, which communicate the warp and twist in initially
circular and coplanar orbits, against viscous damping. Analytic ap-
proximations to the resulting shape can be calculated assuming
linear perturbations in an initially thin disc (e.g. Ferreira & Ogilvie
2009). The global structure then depends on the ratio of the viscos-
ity parameter, α, relative to the disc semi-thickness, H = hRg . For
α > h/r, warped disturbances via the Lense–Thirring precession are
propagated by viscous decay which eventually drags the inner disc
into alignment with the black hole spin, while the outer disc aligns
with the orbital plane of the companion star (Bardeen & Peterson
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Table 2. Eigenfrequencies of the lowest order modes of the general polytropic slender torus.
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Table 3. Eigenfunctions of the lowest order modes of the general polytropic slender torus.
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Figure 1. Poloidal velocity fields (δux, δuy) of the lowest order, non-trivial slender torus modes. The torus was assumed to be orbiting in a Kerr space–time
with a/M = 0.5 and at a Boyer–Lindquist coordinate radius of r0 = 10M. The slope of the internal specific angular momentum distribution was assumed to
give κ̄0/ω̄r = 0.5 and the polytropic index was n = 3.

We summarize the frequencies and eigenfunctions of all the lowest order modes of the general slender torus in Tables 2 and 3. We also
show the poloidal velocity fields for these modes in Fig. 1 for a torus with κ̄0/ω̄r = 0.5. While we are still quite far from the Keplerian
limit, the velocity fields are already showing what happens in that case. The cross-mode frequency becomes degenerate with ω̄θ in that limit,
consisting of opposite vertical oscillations on either radial side of the pressure maximum. The breathing mode becomes degenerate with the
lowest order vertical acoustic wave, as its velocity field becomes largely vertical. The inertial and plus modes consist largely of radial motions
in the Keplerian limit, and become degenerate with ω̄r .

It is clear that the procedure we used in this section can be extended to calculate even higher order modes. In the special case of constant
specific angular momentum tori, the dispersion relation remains quadratic for modes of quite high order, and we summarize the frequencies
and eigenfunctions of these modes in Tables 4 and 5.

In general, however, higher order modes result in dispersion relations which are polynomials of cubic and higher order, and should be
solved numerically. To do this, we substitute the power-series expansion

W (x̄, ȳ) =
∞∑

i,l=0

Wil x̄ i ȳl (62)
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Table 2. Eigenfrequencies of the lowest order modes of the general polytropic slender torus.
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θ (ω̄2
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r ) + (n + 1)κ̄2

0 )2 + 4ω̄2
θ (ω̄2

r − κ̄2
0 )]1/2}/(2n)

Table 3. Eigenfunctions of the lowest order modes of the general polytropic slender torus.

(Px, Py, j, k) Eigenfunction

(+, +, 0, 0) 1
(−, +, 0, 1) x̄
(+, −, 0, 1) ȳ
(−, −, 0, 2) x̄ ȳ

(+, +, 0, 2) or (+, +, 1, 0) 1 + [2nσ̄ 2
0 −4(n+1)ω̄2

θ
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θ
ȳ2

2ω̄2
θ
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Figure 1. Poloidal velocity fields (δux, δuy) of the lowest order, non-trivial slender torus modes. The torus was assumed to be orbiting in a Kerr space–time
with a/M = 0.5 and at a Boyer–Lindquist coordinate radius of r0 = 10M. The slope of the internal specific angular momentum distribution was assumed to
give κ̄0/ω̄r = 0.5 and the polytropic index was n = 3.

We summarize the frequencies and eigenfunctions of all the lowest order modes of the general slender torus in Tables 2 and 3. We also
show the poloidal velocity fields for these modes in Fig. 1 for a torus with κ̄0/ω̄r = 0.5. While we are still quite far from the Keplerian
limit, the velocity fields are already showing what happens in that case. The cross-mode frequency becomes degenerate with ω̄θ in that limit,
consisting of opposite vertical oscillations on either radial side of the pressure maximum. The breathing mode becomes degenerate with the
lowest order vertical acoustic wave, as its velocity field becomes largely vertical. The inertial and plus modes consist largely of radial motions
in the Keplerian limit, and become degenerate with ω̄r .

It is clear that the procedure we used in this section can be extended to calculate even higher order modes. In the special case of constant
specific angular momentum tori, the dispersion relation remains quadratic for modes of quite high order, and we summarize the frequencies
and eigenfunctions of these modes in Tables 4 and 5.

In general, however, higher order modes result in dispersion relations which are polynomials of cubic and higher order, and should be
solved numerically. To do this, we substitute the power-series expansion

W (x̄, ȳ) =
∞∑

i,l=0

Wil x̄ i ȳl (62)
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QPO frequency correlation

• Keplerian, m=-1 radial epicyclic & precession 

• GRO J1655-40

QPOs and Lense–Thirring L103

Figure 2. Schematic diagram of the geometry considered. The inner flow
(grey with blue angular momentum vector) precesses about the black hole
angular momentum vector whilst the outer disc (red/orange) remains aligned
with the binary partner. The flow extends between ri and ro.

Figure 3. Precession frequency of an inner flow of varying outer radius.
The solid black, red, green, blue and magenta lines represent spin values of
a = 0.3, 0.5, 0.7, 0.9 and 0.998, respectively. The green dashed line repre-
sents a point particle for a = 0.7. The minimum radius is the last stable orbit
as a function of spin. We see that, as in the case of point particle Lense–
Thirring, the peak frequency both is higher than observed values and has
too strong a spin dependence.

ζ ∼ −0.5, and the numerical simulations give ζ ∼ 0. We choose
ζ = 0, but note that this makes less than a factor of 2 difference
from the other prescription for the resultant QPO frequency even at
the largest radii, and that this difference decreases monotonically as
ro decreases.

Fig. 3 shows the precession frequency plotted against ro for a
number of spins with ri = rlso. These frequencies are always higher
at a given ro as the effective radius is a surface density weighted
average from ri to ro We still, however, see the same two problems
encountered in Section 2.1, namely that the peak frequency is too
high and varies too strongly with spin.

2.3 Inner radius

So far, we have considered a flow with its inner radius at the last
stable orbit. Instead, the precession time-scale is set by where the
surface density drops significantly, as the region interior to this will
not contribute significantly to the moment of inertia. Full general
relativistic simulations of the magneto-rotational instability (MRI;
the underlying source of the stresses which transport angular mo-
mentum) show that this drops sharply at around 1.5 × rlso (e.g.

Figure 4. Surface density as a function of radius recovered from numerical
simulations of a misaligned flow (Fragile et al. 2007) with a = 0.5 (red) and
a = 0.9 (blue). Data points have been fit by a double law which breaks at ri.
We find ri(a = 0.5) ∼ 8 and ri(a = 0.9) ∼ 9.

fig 4. in Krolik, Hawley & Hirose 2005) for thick flows aligned
with the black hole spin.

However, we are considering Lense–Thirring precession so the
key issue is that the flow is misaligned. The extra torques on
the flow give extra contributions to the stresses. Simulations (e.g.
Fragile et al. 2007) have shown this to increase the inward velocity,
and therefore decrease the density of the flow. Fig. 4 shows the
surface-density profile obtained from two simulations, both of a
flow misaligned by 15o but with differing black hole spin. The blue
points are for a = 0.9 (Fragile et al. 2007) and the red points are for
a = 0.5 (Fragile et al. 2009). We have fit the data with a smoothly
broken power-law function "oxα/(1 + xγ )(ζ+α)/γ where x = r/ri.
This gives xα and x−ζ for r ≪ ri and r ≫ ri, respectively, while γ

controls the sharpness of the break. We fix ζ = 0 (see Section 2.2)
and obtain ri ∼ 9 for a = 0.9 and ri ∼ 8 for a = 0.5, both of which
are significantly larger than rlso − 1.5 rlso for untilted flows.

Ideally, we would now like to re-plot Fig. 3 using the inner radius
for a misaligned flow. However, we only have two simulation points
for ri, which is clearly inadequate for our purposes. We, therefore,
make an analytical approximation in the next section in order to
address this point.

2.3.1 Solid disc with inner radius set by bending waves

The additional torques will be strongest where the flow is most mis-
aligned, so these should track the shape of the flow. This is set by
bending waves, which communicate the warp and twist in initially
circular and coplanar orbits, against viscous damping. Analytic ap-
proximations to the resulting shape can be calculated assuming
linear perturbations in an initially thin disc (e.g. Ferreira & Ogilvie
2009). The global structure then depends on the ratio of the viscos-
ity parameter, α, relative to the disc semi-thickness, H = hRg . For
α > h/r, warped disturbances via the Lense–Thirring precession are
propagated by viscous decay which eventually drags the inner disc
into alignment with the black hole spin, while the outer disc aligns
with the orbital plane of the companion star (Bardeen & Peterson
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QPO frequency correlation

• Could STROBE-X distinguish models?

GRO J1655-40

a⇤ = 0.63 a⇤ = 0.29



Simulations of oscillating tori
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Light curves & Power spectra from simulations

(Mishra et al. 2017)



What can STROBE-X do for QPOs?

• Phase-resolved spectroscopy for LFQPOs 
• Huge gain in Signal-to-Noise 
• Eliminates problems with pile-up (can look at sources like GX 

339-4) 

• Possibly differentiate HFQPO models 
• Need to be able to follow HFQPO during rise of outburst 
• Or definitively show that QPO only appears at certain discrete time 

intervals during outburst
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